![]() |
libSUFR
a LIBrary of Some Useful Fortran Routines
|
Procedures to do statistics. More...
Functions/Subroutines | |
real(double) function | median (data, mask) |
Compute the median of a data array. | |
real function | median_sp (data, mask) |
Compute the median of a data array - single-precision wrapper for median() | |
real(double) function | mean (data, mask) |
Compute the mean of a data array. | |
real function | mean_sp (data, mask) |
Compute the mean of a data array - single-precision wrapper for mean() | |
real(double) function | mean_weight (data, wgts, mask) |
Compute the weighted mean of a data array. | |
real(double) function | stdev (data, dmean, mask, var) |
Compute the standard deviation of a data array with mean 'mean'. | |
real function | stdev_sp (data, mean, mask) |
Compute the standard deviation of a data array with mean 'mean' - single-precision wrapper for stDev() | |
real(double) function | stdev_weight (data, wgts, wmean, mask) |
Compute the weighted standard deviation of a data array with weighted mean 'wMean'. | |
pure subroutine | mean_var_running (mean, var, data, num, stdev) |
Compute a running mean and variance by adding a data point and the data point number to existing values. If num=1, initialise. Note that mean and var are I/O variables and cannot be dummy variables or values. Num must be accurate, and increased by one between calls by the user. Optionally, return the standard deviation. | |
subroutine | prob_range (data, range, llim, ulim, mask) |
Find a given probability range for a data array - the narrowest range that contains a given fraction of data points. | |
subroutine | prob_range_sp (data, range, llim, ulim, mask) |
Find a given probability range for a data array - the narrowest range that contains a given fraction of data points - single-precision wrapper for prob_range() | |
pure integer function | determine_nbin_1d (npoints) |
Roughly estimate the number of 1D bins needed, from the number of data points. | |
subroutine | bin_data_1d (xdat, nbin, norm, mode, cumul, xmin, xmax, xbin, ybin) |
Bin data in 1D bins by counting the number of data points in each bin. | |
subroutine | bin_data_1d_sp (xdat, nbin, norm, mode, cumul, xmin, xmax, xbin, ybin) |
Bin data in 1D bins by counting the number of data points in each bin - single-precision wrapper for bin_data_1d() | |
pure subroutine | histogram_1d_onthefly (xdat, nbin, mode, cumul, xmin, xmax, xbin, ybin, init, weight) |
Create a 1D histogram on the fly (point by point). Bin data points by computing the bin they should be in. | |
subroutine | bin_data_2d (xdat, ydat, norm, nxbin, nybin, xmin, xmax, ymin, ymax, z, tr, weights) |
Bin data in 2 dimensions - computing the bin number rather than searching for it is ~10x faster. | |
subroutine | bin_data_2d_sp (xdat, ydat, norm, nxbin, nybin, xmin, xmax, ymin, ymax, z, tr, weights) |
Bin data in 2 dimensions - single-precision wrapper for bin_data_2d() | |
subroutine | histogram_2d_onthefly (xdat, ydat, nxbin, nybin, xmin, xmax, ymin, ymax, z, init, weight, tr) |
Bin data in 2 dimensions - computing the bin number rather than searching for it is ~10x faster. | |
pure integer(long) function | faculty_i (n) |
Compute the faculty of an integer, returning a long integer. | |
pure real(double) function | faculty (n) |
Compute the faculty of an integer, returning a double-precision real. | |
pure real(double) function | binom_coeff (n, k) |
Compute the binomial coefficient of n and k. | |
pure real(double) function | binom_prob (n, k, p) |
Compute the binomial probability of n and k, and probability p. | |
pure real(double) function | binom_cumul_prob (n, k, p) |
Compute the cumulative binomial probability of n and k OR FEWER, and probability p. | |
pure real(double) function | poisson_prob (k, lambda) |
Compute the Poisson probability of EXACTLY k events occurring in a fixed interval for a known average rate lambda, and independently of the time since the last event: P = λ^k e^-λ / k! | |
pure real(double) function | poisson_prob_cumul (k, lambda) |
Compute the cumulative Poisson probability of k OR FEWER events occurring in a fixed interval for a known average rate lambda, and independently of the time since the last event: P = Σ(i=0,k) λ^i e^-λ / i! | |
real(double) function | correlation (data1, data2) |
Compute the normalised correlation between two data series. | |
Procedures to do statistics.
subroutine sufr_statistics::bin_data_1d | ( | real(double), dimension(:), intent(in) | xdat, |
integer, intent(in) | nbin, | ||
logical, intent(in) | norm, | ||
integer, intent(in) | mode, | ||
logical, intent(in) | cumul, | ||
real(double), intent(inout) | xmin, | ||
real(double), intent(inout) | xmax, | ||
real(double), dimension(:), intent(inout) | xbin, | ||
real(double), dimension(:), intent(inout) | ybin ) |
Bin data in 1D bins by counting the number of data points in each bin.
xDat | Data to be binned (ndat points) |
Nbin | Desired number of bins. Note that the binned-data arrays xbin and ybin must have size >= Nbin+1 |
norm | Normalise histogram (T) or not (F) |
mode | Mode: -1: xbin is left of bin, 0: xbin is centre of bin, 1: xbin is right of bin |
cumul | Make a cumulative histogram (T/F) |
xMin | Minimum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xMax | Maximum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xBin | Binned data, location of the bins. The x values are the left side of the bin! (output) |
yBin | Binned data, height of the bins. I/O so that the array size can be checked (output) |
Definition at line 596 of file statistics.f90.
References sufr_kinds::double, and sufr_system::quit_program_error().
Referenced by bin_data_1d_sp().
subroutine sufr_statistics::bin_data_1d_sp | ( | real, dimension(:), intent(in) | xdat, |
integer, intent(in) | nbin, | ||
logical, intent(in) | norm, | ||
integer, intent(in) | mode, | ||
logical, intent(in) | cumul, | ||
real, intent(inout) | xmin, | ||
real, intent(inout) | xmax, | ||
real, dimension(:), intent(inout) | xbin, | ||
real, dimension(:), intent(inout) | ybin ) |
Bin data in 1D bins by counting the number of data points in each bin - single-precision wrapper for bin_data_1d()
xDat | Data to be binned (ndat points) |
Nbin | Desired number of bins. Note that the binned-data arrays xBin and yBin must have size >= Nbin+1 |
norm | Normalise histogram (T) or not (F) |
mode | Mode: -1: xBin is left of bin, 0: xBin is centre of bin, 1: xBin is right of bin |
cumul | Make a cumulative histogram (T/F) |
xMin | Minimum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xMax | Maximum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xBin | Binned data, location of the bins. The x values are the left side of the bin! (output) |
yBin | Binned data, height of the bins. I/O so that the array size can be checked (output) |
Definition at line 670 of file statistics.f90.
References bin_data_1d(), sufr_kinds::double, and sufr_system::quit_program_error().
subroutine sufr_statistics::bin_data_2d | ( | real(double), dimension(:), intent(in) | xdat, |
real(double), dimension(:), intent(in) | ydat, | ||
integer, intent(in) | norm, | ||
integer, intent(in) | nxbin, | ||
integer, intent(in) | nybin, | ||
real(double), intent(inout) | xmin, | ||
real(double), intent(inout) | xmax, | ||
real(double), intent(inout) | ymin, | ||
real(double), intent(inout) | ymax, | ||
real(double), dimension(nxbin+1,nybin+1), intent(out) | z, | ||
real(double), dimension(6), intent(out) | tr, | ||
real(double), dimension(size(xdat)), intent(in), optional | weights ) |
Bin data in 2 dimensions - computing the bin number rather than searching for it is ~10x faster.
xDat | Input data: x values - array size: ndat |
yDat | Input data: y values - array size: ndat |
norm | Normalise the bins (1) or not (0) |
nxBin | Desired number of bins in the x direction |
nyBin | Desired number of bins in the y direction |
xMin | Lower limit for the binning range in the x direction - autodetermine if xMin = xMax |
xMax | Upper limit for the binning range in the x direction - autodetermine if xMin = xMax |
yMin | Lower limit for the binning range in the y direction - autodetermine if yMin = yMax |
yMax | Upper limit for the binning range in the y direction - autodetermine if yMin = yMax |
z | Binned data set z(nxBin+1,nyBin+1) - this array may be larger than you expect - nbin bins have nbin+1 borders (output) |
tr | Transformation elements for pgplot tr(6) (output) |
weights | Weights to use when binning data, same size as xDat,yDat (optional) |
Definition at line 804 of file statistics.f90.
References sufr_kinds::double, and sufr_system::quit_program_error().
Referenced by bin_data_2d_sp().
subroutine sufr_statistics::bin_data_2d_sp | ( | real, dimension(:), intent(in) | xdat, |
real, dimension(:), intent(in) | ydat, | ||
integer, intent(in) | norm, | ||
integer, intent(in) | nxbin, | ||
integer, intent(in) | nybin, | ||
real, intent(inout) | xmin, | ||
real, intent(inout) | xmax, | ||
real, intent(inout) | ymin, | ||
real, intent(inout) | ymax, | ||
real, dimension(nxbin+1,nybin+1), intent(out) | z, | ||
real, dimension(6), intent(out) | tr, | ||
real, dimension(size(xdat)), intent(in), optional | weights ) |
Bin data in 2 dimensions - single-precision wrapper for bin_data_2d()
xDat | Input data: x values - array size: ndat |
yDat | Input data: y values - array size: ndat |
norm | Normalise the bins (1) or not (0) |
nxBin | Desired number of bins in the x direction |
nyBin | Desired number of bins in the y direction |
xMin | Lower limit for the binning range in the x direction - autodetermine if xMin = xMax |
xMax | Upper limit for the binning range in the x direction - autodetermine if xMin = xMax |
yMin | Lower limit for the binning range in the y direction - autodetermine if yMin = yMax |
yMax | Upper limit for the binning range in the y direction - autodetermine if yMin = yMax |
z | Binned data set z(nxBin+1,nyBin+1) - this array may be larger than you expect - nbin bins have nbin+1 borders (output) |
tr | Transformation elements for pgplot tr(6) (output) |
weights | Weights to use when binning data, same size as xDat,yDat (optional) |
Definition at line 906 of file statistics.f90.
References bin_data_2d(), sufr_kinds::double, and sufr_system::quit_program_error().
pure real(double) function sufr_statistics::binom_coeff | ( | integer, intent(in) | n, |
integer, intent(in) | k ) |
Compute the binomial coefficient of n and k.
n | Total number of trials; n in "n choose k" |
k | Number of succesful trials; k in "n choose k" |
binom_coeff | Binomial coefficient n! / [k!(n-k)!] |
Definition at line 1080 of file statistics.f90.
References binom_coeff(), and sufr_kinds::double.
Referenced by binom_coeff(), and binom_prob().
pure real(double) function sufr_statistics::binom_cumul_prob | ( | integer, intent(in) | n, |
integer, intent(in) | k, | ||
real(double), intent(in) | p ) |
Compute the cumulative binomial probability of n and k OR FEWER, and probability p.
n | Total number of trials; n in "n choose k" |
k | Number of succesful trials OR FEWER; k in "n choose k" |
p | Probability of a succesful trial |
binom_cumul_prob | Cumulative binomial probability Σ(i=0,k) n! / [i!(n-i)!] * p^i * (1-p)^(n-i) |
Definition at line 1140 of file statistics.f90.
References binom_cumul_prob(), binom_prob(), and sufr_kinds::double.
Referenced by binom_cumul_prob().
pure real(double) function sufr_statistics::binom_prob | ( | integer, intent(in) | n, |
integer, intent(in) | k, | ||
real(double), intent(in) | p ) |
Compute the binomial probability of n and k, and probability p.
n | Total number of trials; n in "n choose k" |
k | Number of succesful trials; k in "n choose k" |
p | Probability of a succesful trial |
binom_prob | Binomial probability n! / [k!(n-k)!] * p^k * (1-p)^(n-k) |
Definition at line 1117 of file statistics.f90.
References binom_coeff(), binom_prob(), and sufr_kinds::double.
Referenced by binom_cumul_prob(), and binom_prob().
real(double) function sufr_statistics::correlation | ( | real(double), dimension(:), intent(in) | data1, |
real(double), dimension(:), intent(in) | data2 ) |
Compute the normalised correlation between two data series.
data1 | Data series 1 |
data2 | Data series 2 - should have the same length as data1 |
correlation | Normalised correlation [-1,1] between the two data series |
Definition at line 1217 of file statistics.f90.
References correlation(), sufr_kinds::double, mean(), and sufr_system::warn().
Referenced by correlation().
pure integer function sufr_statistics::determine_nbin_1d | ( | integer, intent(in) | npoints | ) |
Roughly estimate the number of 1D bins needed, from the number of data points.
npoints | Number of data points |
determine_nbin_1d | Number of bins |
Definition at line 564 of file statistics.f90.
References determine_nbin_1d().
Referenced by determine_nbin_1d().
pure real(double) function sufr_statistics::faculty | ( | integer, intent(in) | n | ) |
Compute the faculty of an integer, returning a double-precision real.
n | Number - can be up to 170 for double-precision reals (as opposed to 20 for long integers and 13 for integers) |
faculty | Faculty of n; n! (double-precision real) |
Definition at line 1055 of file statistics.f90.
References sufr_kinds::double, and faculty().
Referenced by faculty(), and poisson_prob().
pure integer(long) function sufr_statistics::faculty_i | ( | integer, intent(in) | n | ) |
Compute the faculty of an integer, returning a long integer.
n | Number - up to 20 for long integers (up to 13 for integers) |
faculty_i | Faculty of n; n! - a long integer |
Definition at line 1033 of file statistics.f90.
References faculty_i(), and sufr_kinds::long.
Referenced by faculty_i().
pure subroutine sufr_statistics::histogram_1d_onthefly | ( | real(double), intent(in) | xdat, |
integer, intent(in) | nbin, | ||
integer, intent(in) | mode, | ||
logical, intent(in) | cumul, | ||
real(double), intent(in) | xmin, | ||
real(double), intent(in) | xmax, | ||
real(double), dimension(:), intent(inout) | xbin, | ||
real(double), dimension(:), intent(inout) | ybin, | ||
logical, intent(in), optional | init, | ||
real(double), intent(in), optional | weight ) |
Create a 1D histogram on the fly (point by point). Bin data points by computing the bin they should be in.
xDat | Data point to be binned |
Nbin | Desired number of bins. Note that the binned-data arrays xBin and yBin must have size >= Nbin+1 |
mode | Mode: -1: xBin is left of bin, 0: xBin is centre of bin, 1: xBin is right of bin |
cumul | Make a cumulative histogram (T/F) |
xMin | Minimum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xMax | Maximum value of the binning range. Set xMin=xMax to auto-determine (I/O) |
xBin | Binned data, location of the bins. The x values are the left side of the bin! (output) |
yBin | Binned data, height of the bins. I/O so that the array size can be checked (output) |
init | Initialisation call: true/false (data collection). Optional; default=false. |
weight | Add weight to the bin, rather than 1. Optional; default=1. |
Definition at line 719 of file statistics.f90.
References sufr_kinds::double, and sufr_system::quit_program_error().
subroutine sufr_statistics::histogram_2d_onthefly | ( | real(double), intent(in) | xdat, |
real(double), intent(in) | ydat, | ||
integer, intent(in) | nxbin, | ||
integer, intent(in) | nybin, | ||
real(double), intent(in) | xmin, | ||
real(double), intent(in) | xmax, | ||
real(double), intent(in) | ymin, | ||
real(double), intent(in) | ymax, | ||
real(double), dimension(nxbin+1,nybin+1), intent(out) | z, | ||
logical, intent(in), optional | init, | ||
real(double), intent(in), optional | weight, | ||
real(double), dimension(6), intent(out), optional | tr ) |
Bin data in 2 dimensions - computing the bin number rather than searching for it is ~10x faster.
xDat | Input data point: x value |
yDat | Input data point: y value |
nxBin | Desired number of bins in the x direction |
nyBin | Desired number of bins in the y direction |
xMin | Lower limit for the binning range in the x direction - autodetermine if xMin = xMax |
xMax | Upper limit for the binning range in the x direction - autodetermine if xMin = xMax |
yMin | Lower limit for the binning range in the y direction - autodetermine if yMin = yMax |
yMax | Upper limit for the binning range in the y direction - autodetermine if yMin = yMax |
z | Binned data set z(nxBin+1,nyBin+1) - this array may be larger than you expect - nbin bins have nbin+1 borders (output) |
init | Init mode: true/false (optional) |
weight | Weight to use when binning data, same size as xDat,yDat (optional) |
tr | Transformation elements for pgplot tr(6) (output; optional) |
Definition at line 967 of file statistics.f90.
References sufr_kinds::double, and sufr_system::quit_program_error().
real(double) function sufr_statistics::mean | ( | real(double), dimension(:), intent(in) | data, |
logical, dimension(:), intent(in), optional | mask ) |
Compute the mean of a data array.
data | 1D array of data points |
mask | Mask to apply to data (optional) |
mean | The mean of a data array |
Definition at line 119 of file statistics.f90.
References sufr_kinds::double, mean(), sufr_system::quit_program_error(), and sufr_system::warn().
Referenced by correlation(), mean(), mean_sp(), mean_var_running(), stdev(), and stdev_sp().
real function sufr_statistics::mean_sp | ( | real, dimension(:), intent(in) | data, |
logical, dimension(:), intent(in), optional | mask ) |
Compute the mean of a data array - single-precision wrapper for mean()
data | 1D array of data points |
mask | Mask to apply to data (optional) |
mean_sp | The mean of a data array |
Definition at line 158 of file statistics.f90.
References sufr_kinds::double, mean(), mean_sp(), and sufr_system::quit_program_error().
Referenced by mean_sp().
pure subroutine sufr_statistics::mean_var_running | ( | real(double), intent(inout) | mean, |
real(double), intent(inout) | var, | ||
real(double), intent(in) | data, | ||
integer, intent(in) | num, | ||
real(double), intent(out), optional | stdev ) |
Compute a running mean and variance by adding a data point and the data point number to existing values. If num=1, initialise. Note that mean and var are I/O variables and cannot be dummy variables or values. Num must be accurate, and increased by one between calls by the user. Optionally, return the standard deviation.
mean | Running mean (I/O) |
var | Running variance (I/O) |
data | New/current data point |
num | Number of the current data point |
stDev | Current standard deviation (output; optional) |
Definition at line 408 of file statistics.f90.
References sufr_kinds::double, mean(), and stdev().
real(double) function sufr_statistics::mean_weight | ( | real(double), dimension(:), intent(in) | data, |
real(double), dimension(:), intent(in) | wgts, | ||
logical, dimension(:), intent(in), optional | mask ) |
Compute the weighted mean of a data array.
data | 1D array of data points |
wgts | Weights for all data points |
mask | Mask to apply to data (optional) |
mean_weight | The weighted mean of a data array |
Definition at line 196 of file statistics.f90.
References sufr_kinds::double, sufr_system::error(), mean_weight(), and sufr_system::quit_program_error().
Referenced by mean_weight(), and stdev_weight().
real(double) function sufr_statistics::median | ( | real(double), dimension(:), intent(in) | data, |
logical, dimension(:), intent(in), optional | mask ) |
Compute the median of a data array.
data | 1D array of data points |
mask | Mask to apply to data (optional) |
median | The median of a data array |
Definition at line 37 of file statistics.f90.
References sufr_kinds::double, median(), sufr_system::quit_program_error(), and sufr_sorting::sorted_index_list().
Referenced by median(), and median_sp().
real function sufr_statistics::median_sp | ( | real, dimension(:), intent(in) | data, |
logical, dimension(:), intent(in), optional | mask ) |
Compute the median of a data array - single-precision wrapper for median()
data | 1D array of data points |
mask | Mask to apply to data (optional) |
median_sp | The median of a data array |
Definition at line 85 of file statistics.f90.
References sufr_kinds::double, median(), median_sp(), and sufr_system::quit_program_error().
Referenced by median_sp().
pure real(double) function sufr_statistics::poisson_prob | ( | integer, intent(in) | k, |
real(double), intent(in) | lambda ) |
Compute the Poisson probability of EXACTLY k events occurring in a fixed interval for a known average rate lambda, and independently of the time since the last event: P = λ^k e^-λ / k!
k | Number of events |
lambda | Average event rate |
poisson_prob | Poisson probability P = λ^k e^-λ / k! |
Definition at line 1167 of file statistics.f90.
References sufr_kinds::double, faculty(), and poisson_prob().
Referenced by poisson_prob(), and poisson_prob_cumul().
pure real(double) function sufr_statistics::poisson_prob_cumul | ( | integer, intent(in) | k, |
real(double), intent(in) | lambda ) |
Compute the cumulative Poisson probability of k OR FEWER events occurring in a fixed interval for a known average rate lambda, and independently of the time since the last event: P = Σ(i=0,k) λ^i e^-λ / i!
k | Number of events |
lambda | Average event rate |
poisson_prob_cumul | Cumulative Poisson probability P = Σ(i=0,k) λ^i e^-λ / i! |
Definition at line 1191 of file statistics.f90.
References sufr_kinds::double, poisson_prob(), and poisson_prob_cumul().
Referenced by poisson_prob_cumul().
subroutine sufr_statistics::prob_range | ( | real(double), dimension(:), intent(in) | data, |
real(double), intent(in) | range, | ||
real(double), intent(out) | llim, | ||
real(double), intent(out) | ulim, | ||
logical, dimension(:), intent(in), optional | mask ) |
Find a given probability range for a data array - the narrowest range that contains a given fraction of data points.
data | 1D array of data points |
range | Probability range - e.g. 0.95 = 95% probability ~ "2-sigma" |
llim | Lower limit of probability range (output) |
ulim | Upper limit of probability range (output) |
mask | Mask to apply to data (optional) |
Definition at line 447 of file statistics.f90.
References sufr_numerics::deq(), sufr_kinds::double, sufr_system::error(), sufr_system::quit_program_error(), sufr_sorting::sorted_index_list(), and sufr_system::warn().
Referenced by prob_range_sp().
subroutine sufr_statistics::prob_range_sp | ( | real, dimension(:), intent(in) | data, |
real, intent(in) | range, | ||
real, intent(out) | llim, | ||
real, intent(out) | ulim, | ||
logical, dimension(:), intent(in), optional | mask ) |
Find a given probability range for a data array - the narrowest range that contains a given fraction of data points - single-precision wrapper for prob_range()
data | 1D array of data points |
range | Probability range - e.g. 0.95 = 95% probability ~ "2-sigma" |
llim | Lower limit of probability range (output) |
ulim | Upper limit of probability range (output) |
mask | Mask to apply to data (optional) |
Definition at line 521 of file statistics.f90.
References sufr_kinds::double, prob_range(), sufr_system::quit_program_error(), and sufr_sorting::sorted_index_list().
real(double) function sufr_statistics::stdev | ( | real(double), dimension(:), intent(in) | data, |
real(double), intent(in), optional | dmean, | ||
logical, dimension(:), intent(in), optional | mask, | ||
real(double), intent(out), optional | var ) |
Compute the standard deviation of a data array with mean 'mean'.
data | 1D array with data points |
dMean | Mean of the data points (optional; will be computed if not provided) |
mask | Mask to apply to data (optional) |
var | Variance of the data (output) |
stDev | The standard deviation |
Definition at line 250 of file statistics.f90.
References sufr_kinds::double, sufr_system::error(), mean(), sufr_system::quit_program_error(), and stdev().
Referenced by mean_var_running(), stdev(), and stdev_sp().
real function sufr_statistics::stdev_sp | ( | real, dimension(:), intent(in) | data, |
real, intent(in) | mean, | ||
logical, dimension(:), intent(in), optional | mask ) |
Compute the standard deviation of a data array with mean 'mean' - single-precision wrapper for stDev()
data | 1D array with data points |
mean | Mean of the data points |
mask | Mask to apply to data (optional) |
stDev | The standard deviation |
Definition at line 308 of file statistics.f90.
References sufr_kinds::double, mean(), sufr_system::quit_program_error(), stdev(), and stdev_sp().
Referenced by stdev_sp().
real(double) function sufr_statistics::stdev_weight | ( | real(double), dimension(:), intent(in) | data, |
real(double), dimension(:), intent(in) | wgts, | ||
real(double), intent(in), optional | wmean, | ||
logical, dimension(:), intent(in), optional | mask ) |
Compute the weighted standard deviation of a data array with weighted mean 'wMean'.
data | 1D array with data points |
wgts | Weights for all data points |
wMean | Weighted mean of the data points (optional) |
mask | Mask to apply to data (optional) |
stDev_weight | The weighted standard deviation |
Definition at line 343 of file statistics.f90.
References sufr_kinds::double, sufr_system::error(), mean_weight(), sufr_system::quit_program_error(), and stdev_weight().
Referenced by stdev_weight().